Compute variable importance scores for the predictors in a model. Note that
get_vi
is a simple wrapper for vip::vi
.
get_vi(mfit, ...)
mfit | Fitted model object (e.g., a "gbm" or "randomForest" object). |
---|---|
... | Additional optional arguments to be passed onto
|
Tidy data frame (i.e., a "tibble" object) with two columns:
Variable
and Importance
.
if (FALSE) { data('mtpl_be') features <- setdiff(names(mtpl_be), c('id', 'nclaims', 'expo', 'long', 'lat')) set.seed(12345) gbm_fit <- gbm::gbm(as.formula(paste('nclaims ~', paste(features, collapse = ' + '))), distribution = 'poisson', data = mtpl_be, n.trees = 50, interaction.depth = 3, shrinkage = 0.1) gbm_fit %>% get_vi gbm_fit %>% get_vi(scale = TRUE) }