Fit a surrogate generalized linear model (GLM) to the segmented data.
surrogate(data, par_list)
data | Data frame containing the segmented training data. |
---|---|
par_list | Named list, constructed via |
GLM (i.e., a "glm" object) which is fit to the segmented data
.
Extra info on arguments can be found at glm
.
if (FALSE) { data('mtpl_be') features <- setdiff(names(mtpl_be), c('id', 'nclaims', 'expo', 'long', 'lat')) set.seed(12345) gbm_fit <- gbm::gbm(as.formula(paste('nclaims ~', paste(features, collapse = ' + '))), distribution = 'poisson', data = mtpl_be, n.trees = 50, interaction.depth = 3, shrinkage = 0.1) gbm_fun <- function(object, newdata) mean(predict(object, newdata, n.trees = object$n.trees, type = 'response')) gbm_fit %>% insights(vars = c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel'), data = mtpl_be, interactions = 'user', pred_fun = gbm_fun) %>% segmentation(data = mtpl_be, type = 'ngroups', values = setNames(c(7, 8, 2, 2, 3), c('ageph', 'bm', 'coverage', 'fuel', 'bm_fuel'))) %>% surrogate(par_list = alist(formula = nclaims ~ ageph_ + bm_ + coverage_ + fuel_ + bm_fuel_, family = poisson(link = 'log'), offset = log(expo))) }